Linguistic Data Model for Natural Languages and Artificial Intelligence. Part 2. Identification
Introduction. The article continues a series of publications on the linguistics of relations (hereinafter R-linguistics) and is devoted to the origin of signs, their independence and determination of the dimension of linguistic spaces. Methodology and sources. The article is devoted to the continuation of the axiomatic approach, but for the identification process. Research methods are to develop the necessary mathematical concepts for linguistics in the field of identification. Results and discussion. The concept of a sign is defined and its interrelation with decomposition of linguistic spaces is established. This radically changes the attitude to signs in linguistics, where the “external” origin of signs is assumed. It is shown that the decomposition of linguistic spaces into signs spaces entails the independence of signs and the possibility of decomposition of objects of identification. It is fundamentally distinguished by the signs on the parameters. On the basis of the independence of signs it is possible to formulate the notion of dimension of linguistic spaces, which is defined as the smallest number of signs describing the linguistic space. In the lattice of linguistic spaces there is a division operation, which allows to simplify the selection of signs. Conclusion. The main conclusions are as follows. Signs, on the basis of which the identification of objects in the category, are abstract mathematical objects associated with the decomposition of linguistic spaces. Signs are independent from each other and allow not only to make decomposition of spaces, but also to decompose on parts objects of identification. Their origin is not related to their presence in the “outside world”, so it, as will be shown later, creates the basis for the emergence of language.
Авторы: Oleg M. Polyakov
Направление: Языкознание
Ключевые слова: R-linguistics, identification, signs, dimension of linguistic space, signs independence
Открыть полный текст статьи